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SOLUTIONS OF FRACTIONAL FOAM DRAINAGE AND
ZAKHAROV-KUZNETSOV EQUATIONS USING A NEW

ALGORITHM

MANOJ KUMAR∗

Abstract. The Daftardar-Gejji Jafari Method (DGJM) has been used exten-
sively in the recent one and a half decades to solve various non-linear equations
such as algebraic equations, integral equations, partial differential equations,
ordinary and fractional differential equations, and so on. In this paper, we
present a new time-efficient algorithm for DGJM and solve the non-linear frac-
tional foam drainage and Zakharov-Kuznetsov equations. We compare the
DGJM solutions with those obtained by the Adomian decomposition method
and the homotopy perturbation method. Moreover, the computational proce-
dure of the new algorithm is more effective, and time-efficient and does not
include any tedious calculations.

1. Introduction

Nonlinear partial differential equations (PDEs) describe various physical and arti-
ficial irregular phenomena and hence play a vital role in sciences and technology.
Several methods such as transform methods, decomposition/iterative methods
and numerical methods have been developed in the literature for solving lin-
ear/nonlinear ordinary and fractional PDEs[1, 2, 3]. Some of the well- established
and studied decomposition methods are the Adomian decomposition method
(ADM) [4], the homotopy perturbation method (HPM) [5] and the Daftardar-
Gejji and Jafari method (DGJM) [6]. The DGJM has been used effectively in
the literature to solve various linear and non-linear equations of integer and frac-
tional orders. In addition, various hybrid analytic and numerical methods have
been developed with the help of DGJM [7, 8, 9]. For more details about DGJM
and its applications, we refer to the review article [10]. Further, in 2020, Kumar
et.al [11] have developed a new algorithm for DGJM which is very simple and
time-efficient as compared to the original one. In the present paper, our aim is
to solve the following two equations using the new algorithm of DGJM.
(i) Foam Drainage Equation: Foaming occurs in many distillation and ab-
sorption processes. Foam drainage is a natural process that describes fluid flows
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out of a foam [12, 13]. Foams are very useful in many industrial and techno-
logical processes from the practical and scientific point of view [14]. There have
been developed many applications for foams, such as cleansing, water purifica-
tion, minerals extraction, etc. [12, 15]. In [16], Verbist and Weaire developed a
model that idealizes the network of Plateau borders. We consider the following
time and space-fractional foam drainage equation [17]

∂αu

∂tα
− 1

2
u
∂2u

∂x2
+ 2u2∂

βu

∂xβ
−
(
∂βu

∂xβ

)2

= 0, 0 < α, β ≤ 1, x > 0. (1)

where α and β are the orders of the fractional time and space derivatives re-
spectively.
(ii) Zakharov-Kuznetsov equations: Recently, the fractional Zakharov -
Kuznetsov equations have been used for modeling various kinds of weakly non-
linear ion-acoustic waves in plasma. This has led to a significant interest in the
study of these equations. We consider the fractional version of the Zakharov
Kuznetsov equations (ZKE(m,n, k))[18, 19] of the form:

∂αu

∂tα
+ a

∂

∂x
um + b

∂3

∂x3
un + c

∂3

∂y∂y∂x
uk = 0, (2)

where u = u(x, y, t), 0 < α ≤ 1, a, b and c are arbitrary constants and m,n and
k are non-zero integers.

This paper is organized as follows: In section 2, we give some basic definitions
of fractional calculus. In section 3, we present the new algorithm of DGJM for
solving a general functional equation. In section 4, we solve the foam drainage
equation (1) and fractional Zakharov-Kuznetsov equations (2) using the new al-
gorithm of DGJM and compare the results with those derived by HPM and ADM.
Finally, we draw the conclusions in section 5.

2. Preliminaries

In this section, we give some basic definitions and properties of the fractional
operators [20].

Definition 2.1. Riemann-Liouville time-fractional integral of order α > 0, of a
real valued function u(x, t) is defined as

Iαt u(x, t) =
1

Γ(α)

∫ t

0

(t− s)α−1u(x, s)ds.

Definition 2.2. The Caputo time-fractional derivative operator of order α > 0,
of a real-valued function u(x, t) is defined as

∂αu(x, t)

∂tα
= In−αt

[
∂nu(x, t)

∂tn

]
,

=


1

Γ(n−α)

∫ t
0
(t− y)n−α−1 ∂

nu(x,y)
∂yn

dy, n− 1 < α < n,

∂nu(x,t)
∂tn

, α = n ∈ N.
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Similarly, the Caputo space-fractional derivative operator of order β > 0 of
u(x, t) is defined as

∂βu(x, t)

∂xβ
= In−βx

[
∂nu(x, t)

∂xn

]
,

=


1

Γ(n−β)

∫ x
0

(x− τ)n−β−1 ∂
nu(x,τ)
∂τn

dτ, n− 1 < β < n,

∂nu(x,t)
∂xn

, β = n ∈ N.

Theorem 2.1. Let u(x, t) ∈ Cn[0, T ] and n− 1 < α < n, n ∈ N then

Iαt

(
∂αu(x, t)

∂tα

)
= u(x, t)−

n−1∑
k=0

uk(x, 0)

k!
tk, t > 0.

3. A New Algorithm for DGJM

In 2006, Daftardar-Gejji and Jafari [6] proposed a decomposition method to
solve the general function equation of the following form:

u = f +N(u), (3)

where u = u(x1, x2, · · · , xn) is a function of n-variables x1, x2, · · · , xn; f a known
function and N a known nonlinear operator from a Banach space B → B. Re-
cently, Kumar et. al [11] proposed a new algorithm for DGJM, which reduces the
computational procedure and time to a large extent as compared to the original
one. The computational procedure of the new algorithm is discussed below: In
DGJM, a solution of the equation (3) is assumed in terms of the following infinite
series:

u =
∞∑
i=0

ui. (4)

Let Sn = u0 + u1 + · · ·un, n = 0, 1, 2 · · ·. Then the terms u′is of eqn (4) are
calculated as follows:

u0 = S0 = f, (5)

u1 = N(S0), (6)

u2 = N(S1)−N(S0), (7)

u3 = N(S2)−N(S1), (8)

...

un = N(Sn−1)−N(Sn−2) (9)

On adding the equations (5-9), we get

u0 + u1 + · · ·+ un = f +N(Sn−1),

which is equivalent to

Sn = f +N(Sn−1). (10)
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(Note that as n→∞ (10) converges to (3)) Thus we get the following recursive
formula for calculating S ′ns:

S0 = f,

Sn = S0 +N(Sn−1), n = 1, 2, · · · ,

}
(11)

It is clear that as n → ∞, Sn converges to u i.e. lim
n→∞

Sn = u, which is the

solution of equation (3). The formula defined in (11) is referred to as a new
algorithm for DGJM. The Convergence analysis of the new algorithm (11) is
discussed in [11] and reiterated here.

Theorem 3.1. Let N : B → B be continuous and Fréchet differentiable with
bounded Fréchet derivative DN . If ‖DN‖= max

‖u‖=1
‖DN(u)‖≤ k < 1, then the se-

quence of successive iterations {Sn} given in (11) converge uniformly to lim
n→∞

Sn =

ũ (say), which is a solution of (3) i.e. ũ = f +N(ũ).

Proof. Note that Sm can be written as

Sm = S0 +
m−1∑
j=0

(Sj+1 − Sj).

In view of the new algorithm (11) and mean value inequality for Banach spaces
[21], we have

‖Sj+1 − Sj‖ = ‖N(Sj)−N(Sj−1)‖≤ ‖DN‖‖Sj − Sj−1‖
≤ k‖N(Sj−1)−N(Sj−2)‖≤ k2‖Sj−1 − Sj−2‖

...

≤ kj‖S1 − S0‖.

Denote Mj = kj‖S1 − S0‖. In view of the Weierstrass M-test,
∑∞

j=0 Mj con-

verges, hence {Sm} converge uniformly to a continuous function ũ (say), which
is a solution of (3).�

4. Applications

In this section, we solve the equations (1) and (2) using a new algorithm of
DGJM and also compare the obtained results with HPM and ADM.

4.1. Time-fractional Foam Drainage equation. Consider the following form
of the time-fractional foam drainage equation (take β = 1 in (1)):

∂αu

∂tα
=

1

2
u
∂2u

∂x2
− 2u2∂u

∂x
+

(
∂u

∂x

)2

, 0 < α ≤ 1, (12)

with the initial condition

u(x, 0) = −
√
c tanh(

√
cx). (13)
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For α = 1, the exact solution of (12-13) is given as [22]:

u(x, t) =

{
−
√
c tanh(

√
c(x− ct)), x ≤ ct,

0, x > ct,
(14)

where c is the velocity of the wavefront.
Applying the inverse operator Iαt , in (12) and using the initial condition (13),

we get

u(x, t) = u(x, 0) + Iαt

[
1

2
u
∂2u

∂x2
− 2u2∂u

∂x
+

(
∂u

∂x

)2
]
, (15)

where N(u) = Iαt

[
1
2
u∂

2u
∂x2
− 2u2 ∂u

∂x
+

(
∂u
∂x

)2
]

. Now by using the recurrence rela-

tion (11), we get

S0 = u(x, 0) = −
√
c tanh(

√
cx),

S1 = S0 +N(S0) = −
√
c tanh(

√
cx) + c2sech2

(√
cx
) tα

Γ(α + 1)
,

S2 = S0 +N(S1) = c2sech2
(√

cx
) tα

Γ(α + 1)
−
√
c tanh

(√
cx
)

+
t2αB1 (B0 −B3 (B5 (

√
cx)−B6 tanh (

√
cx)))

B7

, (16)

where

B0 = B2 tanh
(√

cx
)

sech4
(√

cx
)
, B1 = 4−αc7/2sech2

(√
cx
)
,

B2 =
√
π4αc3Γ

(
α +

1

2

)
Γ(3α + 1)2t2α, B3 = α3Γ(α)2Γ(4α),

B4 = 16αc3/2Γ

(
α +

1

2

)2

tα, B5 =
(
B4(cosh

(
2
√
cx
)
− 2
)

sech4
(√

cx
)
,

B6 = 2πΓ(3α + 1), B7 =
√
πα4Γ(α)3Γ(4α)Γ

(
α +

1

2

)
Γ(3α + 1).

The three-term solution of (12-13) obtained by the new algorithm of DGJM is
given in (16). For α = 1, the obtained results are compared numerically as well
as graphically in tables 1 to 3 and figs. 1 to 3 respectively. Further, it is observed
that the obtained results are in very good agreement with ADM.
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x |uExact − uHPM | |uExact − uADM | |uExact − uNew algo|
-10 0 4.44089× 10−16 4.44089× 10−16

-8 2.4× 10−18 2.24265× 10−13 4.44089× 10−16

-6 2.1059× 10−15 2.29754× 10−10 1.77636× 10−15

-4 2.14918× 10−12 2.34498× 10−7 2.14939× 10−12

-2 2.17229× 10−9 0.000236656 2.18081× 10−9

-1 5.10302× 10−8 0.00523834 5.70554× 10−8

0 1.45797× 10−9 5.2479× 10−8 2.91598× 10−9

Table 1. Absolute errors (t = 0.001, c = 3) for (12-13).

x |uExact − uHPM | |uExact − uADM | |uExact − uNew algo|
-10 2.00000× 10−18 1.77636× 10−15 4.44089× 10−16

-8 2.01600× 10−15 1.86962× 10−12 2.66454× 10−15

-6 2.05744× 10−12 1.9087× 10−9 2.05791× 10−12

-4 2.09993× 10−9 1.94811× 10−6 2.09994× 10−9

-2 0.000002123 0.00197296 2.13177× 10−6

-1 0.000050433 0.0485679 0.0000565495
0 0.000014557 0.00051592 0.0000291443

Table 2. Absolute errors (t = 0.01, c = 3) for (12-13).

x |uExact − uHPM | |uExact − uADM | |uExact − uNew algo|
-10 1.59300× 10−15 1.42109× 10−14 1.77636× 10−15

-8 1.62593× 10−12 1.40941× 10−11 1.62625× 10−12

-6 1.65952× 10−9 1.43841× 10−8 1.65952× 10−9

-4 1.69379× 10−6 0.0000146727 1.6938× 10−6

-2 0.001716375 0.0064218 0.00172493
-1 0.043767689 0.094494 0.0506295
0 0.126259125 3.71367 0.27862

Table 3. Absolute errors (t = 0.1, c = 3) for (12-13).

4.2. Space-Fractional Foam Drainage Equation. Consider the following form
of the space-fractional foam drainage equation (taking α = 1 in (1))

∂u

∂t
=

1

2
u
∂2u

∂x2
− 2u2∂

βu

∂xβ
+

(
∂βu

∂xβ

)2

0 < β ≤ 1, (17)

with the following initial condition

u(x, 0) = x2. (18)
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(a) (b)

Figure 1. For c = 3, (A) exact solution (B) DGJM solution of
(12-13).

(a) (b)

Figure 2. For c = 2 (A) exact solution (B) DGJM solution of
(12-13).

The initial value problem (17-18) is equivalent to the following integral equation

u(x, t) = u(x, 0) + It

[
1

2
u
∂2u

∂x2
− 2u2∂

βu

∂xβ
+

(
∂βu

∂xβ

)2
]
, (19)

where It =
∫ t

0
()dt and N(u) = It

[
1
2
u∂

2u
∂x2
− 2u2 ∂βu

∂xβ
+

(
∂βu
∂xβ

)2
]

.

Using the recurrence relation (11), we get

S0 = u(x, 0) = x2, (20)

S1 = S0 +N(S0)

= x2 − t
(
x2 − 4x6−β

Γ(3− β)
+

4x4−2β

Γ(3− β)2

)
. (21)
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(a) (b)

Figure 3. For c = 1 (A) exact solution (B) DGJM solution of
(12-13).

(a) β = 1 (b) β = 1
2

Figure 4. Two-term DGJM solutions of (17-18).
.

Figures 4(A) and 4(B) are the graphical representation of the two-term DGJM
solution (21) of the space-fractional equation (17-18).

4.3. Time Fractional Zakharov-Kuznetsov Equations. In this subsection,
we solve Zakharov-Kuznetsov equation (2) for m = 2, n = 2, k = 2 and for
m = 3, n = 3, k = 3 using new algorithm. For α = 1, we also compare the
obtained results with HPM and exact solutions.

4.3.1. Consider the following time fractional ZKE(2,2,2) of the form:

∂αu

∂tα
+

∂

∂x
u2 +

1

8

∂3

∂x3
u2 +

1

8

∂3

∂y∂y∂x
u2 = 0, (22)
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where 0 < α ≤ 1. For α = 1, the exact solution of (22) along with the following
initial condition [23]

u(x, y, 0) =
4

3
ρ sinh2[x+ y], (23)

where ρ is an arbitrary constant, is given by

u(x, y, t) =
4

3
ρ sinh2[x+ y − ρt]. (24)

Equation (22) is equivalent to the following integral equation:

u(x, y, t) = u(x, y, 0) + Iαt

[
− ∂

∂x
u2 − 1

8

∂3

∂x3
u2 − 1

8

∂3

∂y∂y∂x
u2

]
, (25)

where Iαt is an integral operator of order α > 0 with respect to t. Let S0 = u0 =

u(x, y, 0) = 4
3
ρ sinh2[x+ y] and N(u) = Iαt

[
− ∂
∂x
u2 − 1

8
∂3

∂x3
u2 − 1

8
∂3

∂y∂y∂x
u2
]
.

In view of (11), we get

S1 = S0 +N(S0) =
4

3
ρ sinh2 z + 8p2

(
4 sinh(2z)− 5 sinh[4z]

)
tα

9Γ(α + 1)
.

S2 = S0 +N(S1) =
4

3
p sinh2 z + 8p2

[
4 sinh(2z)− 5 sinh(4z)

]
tα

9Γ(α + 1)

+ 64p3

[
13 cosh(2z)− 70 cosh(4z) + 75 cosh(6z)

]
B

t2α

27Γ(2α + 1)

− 1280Cp4

[
4 sinh(2z) + 8 sinh(4z)− 60 sinh(6(z))

+ 85 sinh(8(z))

]
t3α

81B2Γ(3α + 1)
, (26)

where B = Γ(α + 1) and C = Γ(2α + 1), z = (x+ y). In table 4, we compare the
DGJM solution (26), the exact and HPM solutions [24, 25] for equation (22-23)
numerically. Further, in table 5 three-term DGJM solutions are computed for
α = 0.50, 0.60 and 0.75. In fig. 5, three-term DGJM and exact solutions of (22-
23) are depicted. Further, in fig. 6 the DGJM solutions are plotted for various
values of the fractional derivative operator α.

x y t Exact solution HPMsolution NewAlgo
0.1 0.1 0.2 5.393877159× 10−5 5.354824505× 10−5 5.355357167× 10−5

0.3 5.388407669× 10−5 5.329624424× 10−5 5.330822346× 10−5

0.4 5.382941057× 10−5 5.304291051× 10−5 5.306419678× 10−5

0.6 0.6 0.2 3.036507411× 10−3 2.985667896× 10−3 2.990009136× 10−3

0.3 3.035778955× 10−3 2.957882201× 10−3 2.967622123× 10−3

0.4 3.035050641× 10−3 2.929005004× 10−3 2.946270879× 10−3

0.9 0.9 0.2 1.153697757× 10−2 1.087461656× 10−2 1.104133904× 10−2

0.3 1.153454074× 10−2 1.047729580× 10−2 1.084887611× 10−2

0.4 1.153210438× 10−2 1.003750659× 10−2 1.069179110× 10−2

Table 4. Numerical solutions of (22-23) when α = 1, ρ = 0.001.
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(a) (b)

Figure 5. For α = 1 (A) exact solution; (B) three-term DGJM
solution of (22-23).

.

(a) α = 0.25 (b) α = 0.50 (c) α = 0.75

Figure 6. Three-term DGJM solutions of (22-23), when y = 0.9.
.

x y t α = 0.50 α = 0.60 α = 0.75
0.1 0.1 0.2 5.281686358× 10−5 5.300424327× 10−5 5.324727333× 10−5

0.3 5.254651973× 10−5 5.272213413× 10−5 5.296653952× 10−5

0.4 5.232041702× 10−5 5.247791132× 10−5 5.271052936× 10−5

0.6 0.6 0.2 2.930071427× 10−3 2.943605015× 10−3 2.963023855× 10−3

0.3 2.910660825× 10−3 2.910660825× 10−3 2.939466956× 10−3

0.4 2.895587979× 10−3 2.904141940× 10−3 2.919197294× 10−3

0.9 0.9 0.2 1.072412964× 10−2 1.074679319× 10−2 1.083753036× 10−2

0.3 1.068554861× 10−2 1.066027133× 10−2 1.069157491× 10−2

0.4 1.068318572× 10−2 1.062142862× 10−2 1.059844176× 10−2

Table 5. Three-term new algorithm solution of (22-23) , when
α = 0.50, 0.60 and 0.75 and ρ = 0.001.

4.3.2. Consider the following time fractional FZKE(3,3,3)

∂αu

∂tα
+

∂

∂x
u3 + 2

∂3

∂x3
u3 + 2

∂3

∂y∂y∂x
u3 = 0, (27)
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where 0 < α ≤ 1. For α = 1, the exact solution of (27) with respect to the
following initial condition [23]

u(x, y, 0) =
3

2
p sinh

(
x+ y

6

)
, (28)

where ρ is an arbitrary constant, is defined as

u(x, y, t) =
3

2
p sinh

(
1

6
(x+ y − pt)

)
. (29)

Eq. (27) is equivalent to the following integral equation

u(x, y, t) = u(x, y, 0) + Iαt

[
− ∂

∂x
u3 − 2

∂3

∂x3
u3 − 2

∂3

∂y∂y∂x
u3

]
. (30)

Let S0 = 3
2
p sinh

(
x+y

6

)
and N(u) = Iαt

[
− ∂
∂x
u3 − 2 ∂3

∂x3
u3 − 2 ∂3

∂y∂y∂x
u3
]
.

In view of (11), we get

S1 = S0 +N(S0) =
3

2
p sinh

(z
6

)
+ 3p3

(
5 cosh

(z
6

)
− 9 cosh

(z
2

)) tα

32Γ(α + 1)
, (31)

S2 = S0 +N(S1) =
3

2
p sinh

(z
6

)
+ 3p3

(
5 cosh

(z
6

)
− 9 cosh

(z
2

)) tα

32Γ(α + 1)

+ 768p5
[
−621 sinh

(z
2

)
+ 70 sinh

(z
6

)
+

765 sinh

(
5(z)

6

)]
t2α

131072Γ[2α + 1]
−

3p7C
[
1385 cosh

(z
6

)
+ 9

(
75 cosh

(z
2

)
−

1615 cosh

(
5(z)

6

)
+ 1827 cosh

(
7(z)

6

))]
t3α

8192B2Γ(3α + 1)

− 3p9t4α
[
3550 sinh

(z
6

)
− 9

)
−3412 sinh

(z
2

)
−

10935 sinh

(
3(z)

2

)
+ 1700 sinh

(
5(z)

6

)
+

9135 sinh

(
7(z)

6

))]
t4α

131072B3Γ(4α + 1)
, (32)

where B = Γ(α + 1), C = Γ(2α + 1), z = (x+ y).
In table 6, three-term DGJM solutions (32) are compared with the exact and

HPM solutions for equation (27-28). In table 7, three-term DGJM solutions are
calculated for α = 0.50, 0.60 and 0.75. In fig. 7, for α = 1 the exact and the
DGJM solutions are plotted. Besides, in fig. 8 three-term DGJM solutions are
represented graphically for different values of α.
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(a) (b)

Figure 7. For α = 1 (A) exact solution; (B) three-term DGJM
solution of (27-28).

.

x y t Exact New Algo HPM
0.1 0.1 0.2 4.995923204× 10−5 5.000918398× 10−5 5.000895773× 10−5

0.3 4.993421817× 10−5 5.000914609× 10−5 5.000880670× 10−5

0.4 4.990920434× 10−5 5.000910819× 10−5 5.000865568× 10−5

0.6 0.6 0.2 3.019530008× 10−4 3.020038994× 10−4 3.020036280× 10−4

0.3 3.019274992× 10−4 3.020038472× 10−4 3.020034401× 10−4

0.4 3.019019978× 10−4 3.020037950× 10−4 3.020032522× 10−4

0.9 0.9 0.2 4.567281735× 10−4 4.567802963× 10−4 4.567799629× 10−4

0.3 4.567020404× 10−4 4.567802244× 10−4 4.567797243× 10−4

0.4 4.566759074× 10−4 4.567801525× 10−4 4.567794858× 10−4

Table 6. Numerical solutions of (27) when α = 1 and p = 0.001.

x y t α = .5 α = 0.6 α = 0.75
0.1 0.1 0.2 5.000906854× 10−5 5.000909830× 10−5 5.000913646× 10−5

0.3 5.000902556× 10−5 5.000905382× 10−5 5.000909263× 10−5

0.4 5.000898933× 10−5 5.000901502× 10−5 5.000905238× 10−5

0.6 0.6 0.2 3.020037404× 10−4 3.020037814× 10−4 3.020038339× 10−4

0.3 3.020036811× 10−4 3.020037201× 10−4 3.020037735× 10−4

0.4 3.020036312× 10−4 3.020036667× 10−4 3.020037181× 10−4

0.9 0.9 0.2 4.567800773× 10−4 4.567801337× 10−4 4.567802061× 10−4

0.3 4.567799957× 10−4 4.567800493× 10−4 4.567801230× 10−4

0.4 4.567799270× 10−4 4.567799757× 10−4 4.567800466× 10−4

Table 7. Three-term new algorithm solution to (27), when α =
0.5, 0.6 and α = 0.75.
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(a) α = 0.25 (b) α = 0.50 (c) α = 0.75

Figure 8. Three-term DGJM solutions of (27-28), when y = 0.9.
.

5. Conclusion

In this paper, a new algorithm of DGJM has been successfully used for ob-
taining the numerical solutions to the time and space fractional foam drainage
equation and Zakharov Kuznetsov equations (FZK(m,n,k)). The DGJM solu-
tions are represented graphically and compared numerically with those obtained
by ADM and HPM. The DGJM solutions are accurate and as well as in very good
agreement with ADM and HPM solutions. Moreover, the solution procedure of
the new algorithm is very simple and straightforward than ADM and HPM. The
amount of computation required in the new algorithm is much less than ADM
and HPM, which makes it more time-efficient.
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