A SIMPLE PROOF OF THE EXISTENCE OF THE DICKMAN FUNCTION

RAFAEL JAKIMCZUK

Abstract. In this article we give a simple proof of the existence of the Dickman’s function related with smooth numbers. We only use the concept of integral of a continuous function.

1. Introduction and Main Results

Let $0 < \alpha \leq 1$ be a fixed real number and consider the number of numbers not exceeding x such that their greatest prime factor does not exceed x^{α}. These numbers are called smooth numbers. We denote the number of these numbers $N(x, \alpha)$. It is well-known [1] that

$$N(x, \alpha) = \phi(\alpha) x + O \left(\frac{x}{\log x} \right), \quad (1.1)$$

where $\phi(\alpha)$ is called Dickman’s function. This function of α is positive, strictly increasing and continuous on the interval $(0, 1]$. Clearly $\phi(1) = 1$. The proof of (1) use the Riemann-Stieltjes integral and the prime number theorem is not necessary (see [1]).

In this article using only the concept of integral of a continuous function we give a simple proof of the weaker result

$$N(x, \alpha) = \phi(\alpha) x + o(x).$$

In this article p denotes a positive prime and $[\cdot]$ denotes the integer-part function.

We shall need the following well-known theorems.

Theorem 1.1. The following asymptotic formula holds

$$\sum_{p \leq x} \frac{1}{p} = \log \log x + M + O \left(\frac{1}{\log x} \right),$$

where M is Mertens’s constant.
Theorem 1.2. Let \(\pi(x) \) be the prime counting function. The following asymptotic formula holds

\[
\pi(x) = O\left(\frac{x}{\log x}\right).
\]

Theorem 1.3. Let \(f(x) \) be a continuous function on the closed interval \([a, b]\), then there exists \(c \in [a, b] \) such that

\[
\int_a^b f(x) \, dx = f(c)(b - a).
\]

Theorem 1.4. Let \(f(x) \) be a continuous function on the closed interval \([a, b]\). Given any number \(\epsilon > 0 \) there exists \(\delta \in \epsilon \) such that if \(|x' - x''| < \delta \), then \(|f(x') - f(x'')| < \epsilon \). That is, \(f(x) \) is uniformly continuous on \([a, b]\).

Now, we can prove our main theorem.

Theorem 1.5. If \(0 < \alpha \leq 1 \) then the following asymptotic formula holds

\[
N(\alpha, x) = \phi(\alpha)x + o(x) = \phi(\alpha)x + f(x)x,
\]

where \(\lim_{x \to \infty} f(x) = 0 \) and \(\phi(\alpha) \) is positive, strictly increasing and continuous on the interval \((0, 1]\). Note that \(f(x) \) depends on \(\alpha \). Besides

\[
\phi(\alpha) = 1 - \int_{1/\alpha}^1 \phi\left(\frac{x}{1-x}\right) \frac{1}{x} \, dx,
\]

where we put \(\phi\left(\frac{x}{1-x}\right) = 1 \) if \(x \in [1/2, 1] \). Therefore if \(1/2 < \alpha < 1 \) then \(\phi(\alpha) = 1 - \int_{1/\alpha}^1 \frac{1}{x} \, dx = 1 + \log \alpha \).

Proof. Let us consider the multiples of \(p \) not exceeding \(x \). Namely

\[
\left\{p, 1, p, 2, \ldots, p \left\lfloor \frac{x}{p} \right\rfloor\right\}
\]

The number of multiples of \(p \) not exceeding \(x \) such that \(p \) is their greatest prime factor we denote \(B(x, p) \). Therefore \(B(x, p) \leq \left\lfloor \frac{x}{p} \right\rfloor \). Let \(1/2 < \alpha < 1 \) be, then \(x^{1-\alpha} \leq x^\alpha \). On the other hand if \(p > x^\alpha \) then we have \(\frac{x}{p} < x^{1-\alpha} \). Therefore

\[
\left\lfloor \frac{x}{p} \right\rfloor \leq \frac{x}{p} < x^{1-\alpha} \leq x^\alpha < p.
\]

That is \(\left\lfloor \frac{x}{p} \right\rfloor < p \), and consequently

\[
B(x, p) = \left\lfloor \frac{x}{p} \right\rfloor.
\]

We have (see (1.5))

\[
[x] - N(\alpha, x) = \sum_{x^\alpha < p \leq x} B(x, p) = \sum_{x^\alpha < p \leq x} \left\lfloor \frac{x}{p} \right\rfloor
\]

\[
= x \sum_{x^\alpha < p \leq x} \frac{1}{p} - \sum_{x^\alpha < p \leq x} \left(\frac{x}{p} - \left\lfloor \frac{x}{p} \right\rfloor \right).
\]
Now (see Theorem 1.2)

\[
0 \leq \sum_{x^n < p \leq x} \left(\frac{x}{p} - \left\lfloor \frac{x}{p} \right\rfloor \right) \leq \sum_{p \leq x} 1 = \pi(x) < e^{\frac{x}{\log x}}.
\]

That is

\[
\sum_{x^n < p \leq x} \left(\frac{x}{p} - \left\lfloor \frac{x}{p} \right\rfloor \right) = O\left(\frac{x}{\log x} \right). \tag{1.7}
\]

On the other hand, we have (see Theorem 1.1)

\[
\sum_{x^n < p \leq x} \frac{1}{p} = \sum_{p \leq x^n} \frac{1}{p} + \sum_{p \leq x^n} \frac{1}{p} = -\log \alpha + O\left(\frac{1}{\log x} \right). \tag{1.8}
\]

Substituting (1.7) and (1.8) into (1.6) we obtain

\[
\lfloor x \rfloor - N(\alpha, x) = -x \log \alpha + O\left(\frac{x}{\log x} \right).
\]

Hence

\[
N(\alpha, x) = (1 + \log \alpha)x + O\left(\frac{x}{\log x} \right).
\]

Therefore the theorem is true if \(\alpha \in [1/2, 1] \).

Suppose that the theorem is true if \(\alpha \in [1/j, 1] \), where \(j \) is a positive integer. That is, we have in this interval

\[
N(\alpha, x) = \phi(\alpha)x + o(x) = \left(1 - \int_{\alpha}^{1} \phi \left(\frac{x}{1-x} \right) \frac{1}{x} dx \right) x + o(x), \tag{1.9}
\]

where the function

\[
\phi(\alpha) = 1 - \int_{\alpha}^{1} \phi \left(\frac{x}{1-x} \right) \frac{1}{x} dx \tag{1.10}
\]

is positive, strictly increasing and continuous on the interval \([1/j, 1]\).

Suppose that \(\frac{1}{j+1} \leq \alpha < \frac{1}{j} \). Therefore we have

\[
\lfloor x \rfloor - N(\alpha, x) = \sum_{x^n < p \leq x} B(x, p) = \sum_{x^n < p \leq x^{1/j}} B(x, p) + \sum_{x^{1/j} < p \leq x} B(x, p), \tag{1.11}
\]

where (see (1.9))

\[
\sum_{x^{1/j} < p \leq x} B(x, p) = \left(\int_{1/j}^{1} \phi \left(\frac{x}{1-x} \right) \frac{1}{x} dx \right) x + o(x). \tag{1.12}
\]

Note that (see (1.10)) on the interval \([\alpha, 1/j]\) the function \(\phi \left(\frac{x}{1-x} \right) \) is positive, strictly increasing and uniformly continuous (see Theorem 1.4). Note that

\[
\phi \left(\frac{1/(j+1)}{1 -(1/(j+1))} \right) = \phi(1/j).
\]

Consequently the function \(\phi \left(\frac{x}{1-x} \right) \frac{1}{x} \) is positive and uniformly continuous on the interval \([\alpha, 1/j]\). Therefore if we consider the positive number \(\epsilon \) then there exists
a partition of the interval \([\alpha, 1/j]\), namely \(\alpha = \beta_1 < \beta_2 < \cdots < \beta_k = 1/j\), such that

\[
\phi\left(\frac{\beta_{i+1}}{1 - \beta_{i+1}}\right) - \phi\left(\frac{\beta_i}{1 - \beta_i}\right) < \frac{\epsilon}{j + 1} \quad (i = 1, 2, \ldots, k - 1)
\]

and such that if \(x', x'' \in [\beta_i, \beta_{i+1}]\) \((i = 1, 2, \ldots, k - 1)\) then we have

\[
\left| \phi\left(\frac{x'}{1 - x'}\right) \frac{1}{x'} - \phi\left(\frac{x''}{1 - x''}\right) \frac{1}{x''} \right| < \frac{\epsilon}{j + 1}
\]

We have (see (1.11))

\[
\sum_{x^\alpha < p \leq x^{1/j}} B(x, p) = \sum_{i=1}^{k-1} \sum_{x^{\beta_i} < p \leq x^{\beta_{i+1}}} B(x, p).
\]

The inequality \(x^{\beta_i} < p \leq x^{\beta_{i+1}}\) implies the inequality \(x^{1-\beta_{i+1}} \leq \frac{p}{x^{\beta_i}} < x^{1-\beta_i}\). Therefore we have

\[
p \leq x^{\beta_{i+1}} = \left(x^{1-\beta_{i+1}}\right)^{\frac{\beta_i}{1-\beta_{i+1}}} \leq \left(\frac{x}{p}\right)^{\frac{\beta_i}{1-\beta_{i+1}}}
\]

and

\[
p > x^{\beta_i} = \left(x^{1-\beta_i}\right)^{\frac{\beta_i}{1-\beta_i}} > \left(\frac{x}{p}\right)^{\frac{\beta_i}{1-\beta_i}}.
\]

Let us consider (see (1.4)) the set \(\{1, 2, 3, \ldots, \left\lfloor \frac{x}{p} \right\rfloor\}\). Let \(C(x, p)\) be the number of numbers in this set such that their greatest prime factor does not exceed \(p\). Consequently \(B(x, p) = C(x, p)\). Equations (1.2) and (1.16) give

\[
B(x, p) = C(x, p) \leq N\left(x, \frac{\beta_{i+1}}{1 - \beta_{i+1}}\right) = \phi\left(\frac{\beta_{i+1}}{1 - \beta_{i+1}}\right) \frac{x}{p} + f\left(\frac{x}{p}\right) \frac{x}{p}
\]

\[
= \phi\left(\frac{\beta_{i+1}}{1 - \beta_{i+1}}\right) \frac{x}{p} + \frac{\epsilon}{j + 1} \frac{x}{p} + f\left(\frac{x}{p}\right) \frac{x}{p}
\]

\[
\leq \phi\left(\frac{\beta_{i+1}}{1 - \beta_{i+1}}\right) \frac{x}{p} + \frac{\epsilon}{j + 1} \frac{x}{p}.
\]

Equations (1.2) and (1.17) give

\[
B(x, p) = C(x, p) \geq N\left(x, \frac{\beta_i}{1 - \beta_i}\right) = \phi\left(\frac{\beta_i}{1 - \beta_i}\right) \frac{x}{p} + f\left(\frac{x}{p}\right) \frac{x}{p}
\]

\[
= \phi\left(\frac{\beta_i}{1 - \beta_i}\right) \frac{x}{p} - \frac{\epsilon}{j + 1} \frac{x}{p} + f\left(\frac{x}{p}\right) \frac{x}{p}
\]

\[
\geq \phi\left(\frac{\beta_i}{1 - \beta_i}\right) \frac{x}{p} - \frac{\epsilon}{j + 1} \frac{x}{p}.
\]

Theorem 1.1 gives

\[
\sum_{x^{\beta_i} < p \leq x^{\beta_{i+1}}} \frac{1}{p} = \sum_{p \leq x^{\beta_{i+1}}} \frac{1}{p} - \sum_{p \leq x^{\beta_i}} \frac{1}{p} = (\log \beta_{i+1} - \log \beta_i) + o(1).
\]

\(\sum_{x^{\beta_i} < p \leq x^{\beta_{i+1}}} \frac{1}{p} = \sum_{p \leq x^{\beta_{i+1}}} \frac{1}{p} - \sum_{p \leq x^{\beta_i}} \frac{1}{p} = (\log \beta_{i+1} - \log \beta_i) + o(1).
\]

(1.20)
Equations (1.18), (1.20), (1.13) and the mean value theorem give

\[\sum_{x^{\beta_i} < p \leq x^{\beta_{i+1}}} B(x, p) \leq \left(\phi \left(\frac{\beta_{i+1}}{1 - \beta_{i+1}} \right) + \frac{\epsilon}{j + 1} \right) x \sum_{x^{\beta_i} < p \leq x^{\beta_{i+1}}} \frac{1}{p} \]

\[= \left(\phi \left(\frac{\beta_{i+1}}{1 - \beta_{i+1}} \right) + \frac{\epsilon}{j + 1} \right) \left(\log \beta_{i+1} - \log \beta_i \right) x + o(x) \]

\[\leq \left(\phi \left(\frac{\beta_{i+1}}{1 - \beta_{i+1}} \right) + \frac{\epsilon}{j + 1} \right) \frac{1}{\beta_i} (\beta_{i+1} - \beta_i) x + o(x) \]

\[\leq \left(\phi \left(\frac{\beta_i}{1 - \beta_i} \right) + \frac{2 \epsilon}{j + 1} \right) \frac{1}{\beta_i} (\beta_{i+1} - \beta_i) x + o(x) \]

\[= \phi \left(\frac{\beta_i}{1 - \beta_i} \right) \frac{1}{\beta_i} (\beta_{i+1} - \beta_i) x + 2 \frac{\epsilon}{j + 1} \frac{1}{\beta_i} (\beta_{i+1} - \beta_i) x + o(x). \tag{1.21} \]

Equations (1.19), (1.20), (1.13) and the mean value theorem give

\[\sum_{x^{\beta_i} < p \leq x^{\beta_{i+1}}} B(x, p) \geq \left(\phi \left(\frac{\beta_i}{1 - \beta_i} \right) - \frac{\epsilon}{j + 1} \right) x \sum_{x^{\beta_i} < p \leq x^{\beta_{i+1}}} \frac{1}{p} \]

\[= \left(\phi \left(\frac{\beta_i}{1 - \beta_i} \right) - \frac{\epsilon}{j + 1} \right) \left(\log \beta_i - \log \beta_{i+1} \right) x + o(x) \]

\[\geq \left(\phi \left(\frac{\beta_i}{1 - \beta_i} \right) - \frac{\epsilon}{j + 1} \right) \frac{1}{\beta_{i+1}} (\beta_{i+1} - \beta_i) x + o(x) \]

\[\geq \left(\phi \left(\frac{\beta_{i+1}}{1 - \beta_{i+1}} \right) - 2 \frac{\epsilon}{j + 1} \right) \frac{1}{\beta_i} (\beta_{i+1} - \beta_i) x + o(x) \]

\[= \phi \left(\frac{\beta_{i+1}}{1 - \beta_{i+1}} \right) \frac{1}{\beta_{i+1}} (\beta_{i+1} - \beta_i) x - 2 \frac{\epsilon}{j + 1} \frac{1}{\beta_{i+1}} (\beta_{i+1} - \beta_i) x + o(x). \tag{1.22} \]

Equations (1.15) and (1.21) give

\[\sum_{x^{\beta_i} < p \leq x^{\beta_{i+1}}} B(x, p) \leq \left(\sum_{i=1}^{k-1} \phi \left(\frac{\beta_i}{1 - \beta_i} \right) \frac{1}{\beta_i} (\beta_{i+1} - \beta_i) \right) x \]

\[+ \frac{2 \epsilon}{j + 1} x \sum_{i=1}^{k-1} \frac{1}{\beta_i} (\beta_{i+1} - \beta_i) + o(x). \tag{1.23} \]

Equations (1.15) and (1.22) give

\[\sum_{x^{\beta_i} < p \leq x^{\beta_{i+1}}} B(x, p) \geq \left(\sum_{i=1}^{k-1} \phi \left(\frac{\beta_{i+1}}{1 - \beta_{i+1}} \right) \frac{1}{\beta_{i+1}} (\beta_{i+1} - \beta_i) \right) x \]

\[- \frac{2 \epsilon}{j + 1} x \sum_{i=1}^{k-1} \frac{1}{\beta_{i+1}} (\beta_{i+1} - \beta_i) + o(x). \tag{1.24} \]
We have \(\frac{1}{\beta_i} \leq 1/\alpha \) \((i = 1, 2, \ldots, k)\), since \(\beta_i \geq \alpha \) (see above). On the other hand \((1/\alpha) \leq j + 1\), since \(\alpha \geq 1/(j + 1) \) (see above). Therefore we have
\[
\sum_{i=1}^{k-1} \frac{1}{\beta_i} (\beta_{i+1} - \beta_i) \leq \frac{1}{\alpha} \left(\frac{1}{2} - \alpha \right) \leq \frac{1}{\alpha} \leq j + 1
\] (1.25)
and
\[
\sum_{i=1}^{k-1} \frac{1}{\beta_{i+1}} (\beta_{i+1} - \beta_i) \leq \frac{1}{\alpha} \left(\frac{1}{2} - \alpha \right) \leq \frac{1}{\alpha} \leq j + 1.
\] (1.26)

On the other hand we have (see Theorem 1.3 and (1.14))
\[
\left| \sum_{i=1}^{k-1} \phi \left(\frac{\beta_i}{1 - \beta_i} \right) \frac{1}{\beta_i} (\beta_{i+1} - \beta_i) - \int_{\alpha}^{1/j} \frac{\phi \left(\frac{x}{1-x} \right)}{x} dx \right|
\leq \sum_{i=1}^{k-1} \phi \left(\frac{\beta_i}{1 - \beta_i} \right) \frac{1}{\beta_i} \left(\phi \left(\frac{c_i}{1 - c_i} \right) \frac{1}{c_i} \right) (\beta_{i+1} - \beta_i)
\leq \frac{\epsilon}{j + 1}
\] (1.27)
where \(c_i \in [\beta_i, \beta_{i+1}] \). In the same way we obtain
\[
\left| \sum_{i=1}^{k-1} \phi \left(\frac{\beta_{i+1}}{1 - \beta_{i+1}} \right) \frac{1}{\beta_{i+1}} (\beta_{i+1} - \beta_i) - \int_{\alpha}^{1/j} \frac{\phi \left(\frac{x}{1-x} \right)}{x} dx \right|
\leq \frac{\epsilon}{j + 1}.
\] (1.28)

Equations (1.23), (1.25) and (1.27) give
\[
\sum_{x^\alpha < p \leq x^{1/j}} B(x, p) \leq \left(\int_{\alpha}^{1/j} \frac{\phi \left(\frac{x}{1-x} \right)}{x} dx \right) x + \frac{\epsilon}{j + 1} x + 2 \frac{\epsilon}{j + 1} (j + 1) x
+ o(x)
\] (1.29)

Equations (1.24), (1.26) and (1.28) give
\[
\sum_{x^\alpha < p \leq x^{1/j}} B(x, p) \geq \left(\int_{\alpha}^{1/j} \frac{\phi \left(\frac{x}{1-x} \right)}{x} dx \right) x - \frac{\epsilon}{j + 1} x - 2 \frac{\epsilon}{j + 1} (j + 1) x
+ o(x)
\] (1.30)

Now, \(\epsilon \) is arbitrarily small. Therefore equations (1.29) and (1.30) give
\[
\sum_{x^\alpha < p \leq x^{1/j}} B(x, p) = \left(\int_{\alpha}^{1/j} \frac{\phi \left(\frac{x}{1-x} \right)}{x} dx \right) x + o(x).
\] (1.31)
Equations (1.31), (1.12) and (1.11) give equations (1.9) and (1.10), where these equations are true if $\alpha \in [1/(j+1), 1]$, since the theorem is true if $\alpha \in [1/2, 1]$. Now, $\lim_{j \to \infty} (1/j) = 0$ and consequently equations (1.9) and (1.10) are true for all $\alpha > 0$. The theorem is proved. □

Acknowledgement. The author is very grateful to Universidad Nacional de Luján.

REFERENCES

1. V. Ramaswami, *On the number of positive integers less than x and free of prime divisors greater than x^c*, Bull. Amer. Math. Soc., 55 (1949), 1122 - 1127.

1 División Matemática, Universidad Nacional de Luján, Buenos Aires, Argentina.

Email address: jakimczu@mail.unlu.edu.ar