SELF-SWITCHING OF UNION OF TWO COMPLETE GRAPHS

C. JAYASEKARAN¹ AND S. S. ATHITHIYA²*

ABSTRACT. By a graph \(H = (V, E) \), we mean a finite undirected graph without loops and multiple edges. Let \(H \) be a graph and \(\sigma \subseteq V \) be a non-empty subset of \(V \). \(H^\sigma \) is the graph obtained from \(H \) by removing all edges between \(\sigma \) and its complement \(V - \sigma \) and adding as edges all non-edges between \(\sigma \) and \(V - \sigma \). Then \(\sigma \) is said to be a self-switching of \(H \) if \(H \cong H^\sigma \). It can also be referred to as \(k \)-vertex self-switching where \(k = |\sigma| \). The set of all self-switchings of the graph \(H \) with cardinality \(k \) is represented by \(SS_k(H) \) and its cardinality by \(ss_k(H) \). A graph on \(m \) vertices in which each pair of distinct vertices are neighbors is called a complete graph and is denoted by \(K_m \). \(K_m \cup K_n \) is the union of two complete graphs and is disconnected. In this paper, we give necessary and sufficient conditions for \(\sigma \) to be a self-switching for the graph \(H = K_m \cup K_n \) and using this, we find the cardinality \(ss_k(H) \).

1. INTRODUCTION AND PRELIMINARIES

For a finite undirected graph \(H(V, E) \) and a non-empty subset \(\sigma \subseteq V \), the switching of \(H \) by \(\sigma \) is defined as the graph \(H^\sigma(V, E') \) which is obtained from \(H \) by removing all edges between \(\sigma \) and its complement \(V - \sigma \) and adding as edges all non-edges between \(\sigma \) and \(V - \sigma \). For \(\sigma = \{v\} \), we write \(H^v \) and the corresponding switching is called as vertex switching. We also call it as \(|\sigma| \)-vertex switching. When \(|\sigma| = 2 \), it is termed as 2-vertex switching. If \(H \) is isomorphic to \(H^\sigma \), then it is called self vertex switching [5]. In [3], switching classes are discussed. An undirected graph that has a distinct edge connecting each pair of distinct vertices is said to be complete [1, 4]. Here, we will discover how the union of two complete graphs can self-switch.

Definition 1.1. [8] Let \(H(V, E) \) be a finite undirected graph and \(\sigma \subseteq V \). The switching of \(H \) by \(\sigma \) is defined as the graph \(H^\sigma(V, E') \), which is obtained from \(H \) by removing all edges between \(\sigma \) and its complement \(V - \sigma \) and by adding all edges as non-edges between \(\sigma \) and \(V - \sigma \). When \(\sigma = \{v\} \subset V \), the corresponding switching \(H^{(v)} \) is called as vertex switching and is denoted by \(H^v \).

Definition 1.2. [6] A subset \(\sigma \) of \(V(H) \) is said to be a self-switching of \(H \) if \(H \cong H^\sigma \).

Date: Received: Feb 1, 2024; Accepted: Mar 29, 2024.
* Corresponding author.

2020 Mathematics Subject Classification. 05C60.

Key words and phrases. switching, complete graphs, union of two complete graphs.
The set of all self-switchings of H with cardinality k is denoted by $SS_k(H)$ and its cardinality by $ss_k(H)$.

If $k = 1$, then the corresponding self-switching is called self-vertex-switching.

If $k = 2$, then the corresponding self-switching is called as 2-vertex self-switching.

Definition 1.3. [4] The Complement \bar{H} of a graph H also has $V(H)$ as its vertex set, but two vertices are adjacent in \bar{H} if and only if they are not adjacent in H.

Lemma 1.4. [10] For a graph $H(V, E)$ and $\sigma \subseteq V$, it holds that $\bar{H}^\sigma = \bar{H}^\sigma$.

Theorem 1.5. [7] If $\sigma = \{u, v\} \subseteq V$ is a 2-vertex self switching of a graph H, then $d_H(u) + d_H(v) = \begin{cases} p & \text{if } uv \in E(H) \\ p - 2 & \text{if } uv \notin E(H) \end{cases}$

2. **Main results**

Theorem 2.1. Any self-switching of a graph H is also a self-switching of the graph \bar{H} and $SS_k(H) = SS_k(\bar{H})$.

Proof. Let $\sigma \subseteq V$ be a self-switching of graph H. Let g be an isomorphism between H and \bar{H}^σ. Using lemma 1.4, we get $(\bar{H}^\sigma) = (\bar{H})^\sigma$. Then g is also an isomorphism between \bar{H} and $(\bar{H})^\sigma$. This implies that σ is a self-switching of \bar{H}. Hence, $SS_k(H) = SS_k(\bar{H})$. \hfill \Box

Theorem 2.2. Let $H = K_r \cup K_n$ and $\sigma = \{d^1, d^2\} \subseteq V(H)$ be such that $d^1d^2 \notin E(H)$. Then σ is a 2-vertex self-switching of H.

Proof. Let $H = K_r \cup K_n$ with $V(H) = \{d^1, d^2 : 1 \leq b \leq r, 1 \leq c \leq n\}$. Clearly, H has $p = r + n$ vertices. Let $d^1d^2 \notin E(H)$. Then d^1 and d^2 belong to different components of H. Without loss of generality, let $d^1 \in V(K_r)$ and $d^2 \in V(K_n)$. Clearly, $d_H(d^1) = r - 1$, $d_H(d^2) = n - 1$ and $d_H(d^1) + d_H(d^2) = r + n - 2$. Hence, by Theorem 1.5, $\sigma = \{d^1, d^2\}$ may be a 2-vertex self-switching of graph H. In H^σ, the vertex d^1 in K_r is a neighbor of the vertices of K_n other than d^2 and the vertex d^2 in K_n is a neighbor of the vertices of K_r other than d^1. Now define, $g : V(H) \to V(H^\sigma)$ by $g(d^1) = d^2$, $g(d^2) = d^1$ and $g(w) = w$ for $w \neq d^1, d^2$. Clearly, g creates an isomorphism between H and H^σ. Hence, $\sigma = \{d^1, d^2\}$ is a 2-vertex self-switching of the graph H. \hfill \Box

Remark 2.3. The converse of the Theorem 2.2 is not necessarily true. For example, let the graph $H = K_6 \cup K_4$ be the union of two complete graphs K_6 and K_4 as shown in the Figure 2.1. Let $\sigma = \{d^1, d^2\}$ be the switching of H. The switching graph of H by σ, H^σ is given in the Figure 2.2. Clearly, $H \cong H^\sigma$ and thereby $\sigma = \{d^1, d^2\}$ is a 2-vertex self-switching of H but $d^1d^2 \in E(H)$.

Theorem 2.4. For \(r \neq s \), let \(H = K_r \cup K_s \) and let \(\sigma = \{d^1, d^2\} \subseteq V(H) \) be such that \(d^1d^2 \) is an edge in the largest order component of \(H \). Then \(\sigma \) is a 2-vertex self-switching of \(H \) if and only if \(|r - s| = 2 \).

Proof. Let \(H = K_r \cup K_s \) be a graph with \(V(H) = V_1 \cup V_2 \) where \(V_1 = V(K_r) \) and \(V_2 = V(K_s) \). Clearly, \(H \) has \(r + s \) number of vertices and let \(V(H) = \{d^1_b, d^2_c : 1 \leq b \leq r; 1 \leq c \leq s\} \) where \(d^1_b \in V_1 \) and \(d^2_c \in V_2 \). Let \(\sigma = \{d^1, d^2\} \subseteq V(H) \) be such that \(d^1d^2 \) lies in the largest order component of \(H \).

Let \(|r - s| = 2 \). Then either \(r - s = 2 \) or \(s - r = 2 \). Without loss of generality, let \(r > s \) and so \(r - s = 2 \). Since \(r > s \), \(d^1d^2 \in E(K_r) \). Then \(d_H(d^1) + d_H(d^2) = 2r - 2 = r + r - 2 = p \). Therefore by Theorem 1.5, \(\sigma \) may be a 2-vertex self-switching of \(H \). In \(H^\sigma \), the vertices in \(\sigma \) are neighbors of the vertices of \(V_2 \) and the vertices in \(V_1 - \sigma \) are neighbors of each other. Since \(H[V_1] = K_r \), \(H[V_1 - \sigma] = H^\sigma[V_1 - \sigma] = K_{r-2} \). Furthermore, \(H^\sigma[V_2 \cup \sigma] = K_r \). Thus, \(H^\sigma = K_r \cup K_{r-2} \) and so \(H \cong H^\sigma \). Hence, \(\sigma \) is a \(k \)-vertex self-switching of \(H \).

Conversely, let \(\sigma \) be a 2-vertex self-switching of \(H \). If \(|r - s| \neq 2 \), then \(d_H(d^1) + d_H(d^2) \) is either \(2r - 2 \) or \(2s - 2 \) which is not equal to \(p \) or \(p - 2 \) and so \(\sigma \) cannot be a 2-vertex self-switching of \(H \) which goes against our assumption. Therefore, \(|r - s| = 2 \).

Hence, we obtain the desired result. \(\square \)
Theorem 2.5. Let \(H = K_r \cup K_s \) and \(\sigma = \{d^1, d^2\} \subseteq V(H) \) be a 2-vertex self-switching of \(H \). Then

\[
ss_2(H) = \begin{cases} \binom{r}{2} + rs & \text{if } r - s = 2 \\ rs & \text{otherwise} \end{cases}
\]

Proof. Let \(H = K_r \cup K_s \) be a graph with \(r + s \) number of vertices and \(V(H) = \{d^1_b, d^2_c : 1 \leq b \leq r; 1 \leq c \leq s\} \) where \(d^1_b \in V(K_r) \) and \(d^2_c \in V(K_s) \). Without loss of generality, we consider that \(r \geq s \). Let \(\sigma = \{d^1, d^2\} \subseteq V(H) \). Then \(d^1d^2 \in E(H) \) or \(d^1d^2 \not\in E(H) \).

Case 1. \(d^1d^2 \in E(H) \)

If \(r = s \), then \(d_H(d^1) + d_H(d^2) = 2s - 2 \), which is not the same as \(p \). Therefore, by Theorem 1.5, \(\sigma \) cannot be a 2-vertex self-switching of \(H \). So, let \(r > s \). We have either \(d^1d^2 \in E(K_r) \) or \(d^1d^2 \in E(K_s) \). However, if \(d^1d^2 \in E(K_s) \), then \(d_H(d^1) + d_H(d^2) = 2s - 2 \neq p \) or \(p - 2 \). Hence by Theorem 1.5, \(\sigma \) cannot be a 2-vertex self-switching of \(H \). If \(d^1d^2 \in E(K_r) \), then by Theorem 2.4, \(\sigma \) is a 2-vertex self-switching of \(H \) if and only if \(r - s = 2 \). As there are \(\binom{r}{2} \) possible pairs of vertices in \(K_r \), \(ss_2(H) \geq \binom{r}{2} \).

Case 2. \(d^1d^2 \not\in E(H) \)

By Theorem 2.2, \(\sigma \) is a 2-vertex self-switching of \(H \). Thus for \(r \geq s \) in \(H \), any non-adjacent pair of vertices in \(H \) is a 2-vertex self-switching of \(H \). Since there are \(rs \) such pairs in \(H \), the number of 2-vertex self-switchings in \(H \) is \(rs \).

From the above two cases, we get,

\[
ss_2(H) = \begin{cases} \binom{r}{2} + rs & \text{if } r - s = 2 \\ rs & \text{otherwise} \end{cases}
\]

\(\square \)

Theorem 2.6. Let \(H = K_r \cup K_{r-k} \) and \(\sigma = \{v_1, v_2, ..., v_k\} \subseteq V(H) \). Then

\[
ss_k(H) = \begin{cases} \binom{r-1}{k} + \frac{1}{2}\binom{r-k}{\frac{k}{2}} & \text{if } k \text{ is even} \\ \binom{r}{k} & \text{if } k \text{ is odd} \end{cases}
\]

Proof. Let \(H = K_r \cup K_{r-k} \) be a graph with \(V(H) = V_1 \cup V_2 \) where \(V_1 = V(K_r) \) and \(V_2 = V(K_{r-k}) \). Clearly, \(H \) has \(2r - k \) vertices. Let \(\sigma = \{v_1, v_2, ..., v_k\} \subseteq V(H) \).

Then we have, \(\sigma \subseteq V_1 \) or \(\sigma \subseteq V_2 \) or \(\sigma \subseteq V_1 \cup V_2 \).

Case 1. \(\sigma \subseteq V_1 \)

Let \(V_1 = \{d^1_b : 1 \leq b \leq r\} \) and \(V_2 = \{d^2_c : 1 \leq c \leq r-k\} \). Then in \(H^\sigma \), the vertices in \(\sigma \) are neighbors of the vertices of \(V_2 \) and not neighbors of the vertices of \(V_1 - \sigma \). Since \(H[V_1] = K_r \), \(H[V_1 - \sigma] = H^\sigma[V_1 - \sigma] = K_{r-k} \). Moreover, \(H^\sigma[V_2 \cup \sigma] = K_{r-k} \). Thus, \(H^\sigma = K_r \cup K_{r-k} \) and so \(H \cong H^\sigma \). Hence, \(\sigma \) is a \(k \)-vertex self-switching of \(H \).

Since there are \(\binom{r}{k} \) possible combinations of selecting \(k \) vertices from \(r \) vertices, \(ss_k(H) \geq \binom{r}{k} \).

Case 2. \(\sigma \subseteq V_2 \)

Then in \(H^\sigma \), the vertices in \(\sigma \) are neighbors of the vertices of \(V_1 \) and not neighbors of the vertices of \(V_2 - \sigma \). Since \(H[V_2] = K_{r-k} \), \(H[V_2 - \sigma] = H^\sigma[V_2 - \sigma] = K_{r-2k} \). Moreover, \(H^\sigma[V_1 \cup \sigma] = K_{r+k} \). Thus, \(H^\sigma = K_{r+k} \cup K_{r-2k} \not\cong H \). Hence, \(\sigma \) cannot be a \(k \)-vertex self-switching of \(H \).
Case 3. \(\sigma \subseteq V_1 \cup V_2 \)

Let \(r_1 \) vertices of \(\sigma \) be in \(V_1 \) and the remaining \(k - r_1 \) vertices of \(\sigma \) be in \(V_2 \). Then we have either \(r_1 = k - r_1 \) or \(r_1 \neq k - r_1 \).

Subcase 3.1. \(r_1 = k - r_1 \)

Then \(2r_1 = k \) and so \(k \) is even. Without loss of generality, let \(\sigma = \{ d_1^r, d_2^r : 1 \leq b \leq \frac{k}{2} \} \) where \(d_1^r \in V_1 \) and \(d_2^r \in V_2 \). Then in \(H^\sigma \), the \(\frac{k}{2} \) vertices \(d_1^r \)'s are neighbors of the vertices of \(V_2 - \sigma \) and the \(\frac{k}{2} \) vertices \(d_2^r \)'s are neighbors of the vertices of \(V_1 - \sigma \).

Define \(g : V(H) \to V(H^\sigma) \) by \(g(d_1^r) = d_2^r; g(d_2^r) = d_1^r; g(w) = w \forall w \neq d_1^r, d_2^r, 1 \leq b \leq \frac{k}{2} \). Clearly, \(g \) establishes an isomorphism between \(H \) and \(H^\sigma \) and so \(\sigma \) is a \(k \)-vertex self-switching of \(H \). As there are \(\binom{k}{\frac{k}{2}} \) possibilities of selecting \(\frac{k}{2} \) vertices from \(r \) vertices of \(K_r \) and \(\binom{r}{k} \) possibilities of selecting \(\frac{k}{2} \) vertices from \(r - k \) vertices of \(K_{r-k} \), there are \(\binom{k}{\frac{k}{2}} \binom{r}{k} \) \(k \)-vertex self-switchings in \(H \).

Subcase 3.2. \(r_1 \neq k - r_1 \)

Let a vertex of \(\sigma \) be in \(V_1 \) and the remaining \(k - 1 \) vertices of \(\sigma \) be in \(V_2 \). Then in \(H^\sigma \), the vertex of \(\sigma \) in \(V_1 \) is a neighbor of the vertices of \(V_2 - \sigma \) and the \(k - 1 \) vertices of \(\sigma \) in \(V_2 \) are neighbors of the vertices of \(V_1 - \sigma \). Thus we have, \(H^\sigma = K_{r+k-2} \cup K_{r-2k+2} \).

Also, if \(2\) vertices of \(\sigma \) are in \(V_1 \) and \(k - 2 \) vertices of \(\sigma \) are in \(V_2 \), then in \(H^\sigma \), the \(2 \) vertices of \(\sigma \) in \(V_1 \) are neighbors of the vertices of \(V_2 - \sigma \) and the \(k - 2 \) vertices of \(\sigma \) in \(V_2 \) are neighbors of the vertices of \(V_1 - \sigma \). Thus we have, \(H^\sigma = K_{r+k-4} \cup K_{r-2k+4} \).

Similarly, if \(3 \) vertices of \(\sigma \) are in \(V_1 \) and \(k - 3 \) vertices of \(\sigma \) are in \(V_2 \), then \(H^\sigma = K_{r+k-6} \cup K_{r-2k+6} \)

Therefore in general, if \(r_1 \) vertices of \(\sigma \) are in \(V_1 \) and \(k - r_1 \) vertices of \(\sigma \) are in \(V_2 \), then \(H^\sigma = K_{r+k-2r_1} \cup K_{r-2k+2r_1} \). This implies that \(H^\sigma \not\cong H \) and hence \(\sigma \) cannot be a self-switching of \(H \).

Thus from the above cases, we get \(ss_k(H) = \binom{r}{k} + \binom{r}{\frac{k}{2}} \binom{r}{\frac{k}{2}} \), if \(k \) is even and \(ss_k(H) = \binom{r}{k} \), if \(k \) is odd. \(\square \)

Theorem 2.7. Let \(H = K_r \cup K_s \) and the vertices of \(\sigma = \{ u_1, u_2, u_3, \ldots, u_k \} \subseteq V(H) \) be contained only in \(K_r \). Then \(\sigma \) is a \(k \)-vertex self-switching of \(H \) if and only if \(s = r - k \).

Proof. Let \(H = K_r \cup K_s \) with \(V(H) = V_1 \cup V_2 \) where \(V_1 = V(K_r) \) and \(V_2 = V(K_s) \) and \(\sigma = \{ u_1, u_2, u_3, \ldots, u_k \} \subseteq V(K_r) \).

Let \(s = r - k \). Then \(H = K_r \cup K_{r-k} \). Since \(\sigma \subseteq V(K_r) \), we have in \(H^\sigma \), the vertices of \(\sigma \) are neighbors of \(V_2 \) and the vertices of \(V_1 - \sigma \) are neighbors of each other. Thus we have, \(H^\sigma = K_{r-k} \cup K_r \cong H \). Hence, \(\sigma \) is a \(k \)-vertex self-switching of \(H \).

Conversely, let \(\sigma = \{ u_1, u_2, u_3, \ldots, u_k \} \subseteq V(K_r) \) be a \(k \)-vertex self-switching of \(H \). Then, \(H \cong H^\sigma \). Since in \(H^\sigma \), the vertices of \(\sigma \) are neighbors of the vertices of \(V_2 \) and the vertices of \(V_1 - \sigma \) are neighbors of each other, \(H^\sigma = K_{r-k} \cup K_{s+k} \).

Hence \(K_r \cup K_s \cong K_{r-k} \cup K_{s+k} \). Thus either \(r - k = r \) and \(s + k = s \) or \(r - k = s \) and \(s + k = r \). Since \(k = 0 \) is not possible, we have \(s = r - k \). Hence, we obtain the desired result. \(\square \)

Result 2.8. Let \(H = K_r \cup K_s \) and \(\sigma = \{ u_1, u_2, u_3, \ldots, u_k \} \subseteq V(H) \). If \(|V_1 \cap \sigma| = r_1 \) and \(|V_2 \cap \sigma| = k - r_1 \), then \(H^\sigma = K_{r+k-2r_1} \cup K_{s-k+2r_1} \).
Proof. Let \(H = K_r \cup K_s \) and \(\sigma = \{u_1, u_2, u_3, \ldots, u_k\} \subseteq V(G) \subseteq V_1 \cup V_2 \) where \(V_1 = V(K_r) \) and \(V_2 = V(K_s) \) such that \(|V_1 \cap \sigma| = r_1\) and \(|V_2 \cap \sigma| = k - r_1\). In \(H^\sigma \), the \(r_1 \) vertices of \(\sigma \) in \(K_r \) are neighbors of the \(s - k + r_1 \) vertices of \(V_2 - \sigma \) and the \(k - r_1 \) vertices of \(\sigma \) in \(K_s \) are neighbors of the \(r - r_1 \) vertices of \(V_1 - \sigma \). Hence, \(H^\sigma = K_{r+k-2r_1} \cup K_{s-k+2r_1} \). □

Example 2.9. Consider the graph \(H = K_8 \cup K_5 \) which is the union of two complete graphs \(K_8 \) and \(K_5 \) as shown in the Figure 2.3 where \(V(K_8) = \{a_1, b_1, c_1, d_1, e_1, f_1, g_1, h_1\} \) and \(V(K_5) = \{i_1, j_1, k_1, l_1, m_1\} \). Here \(k = 5, r_1 = 3, k - r_1 = 2 \) and \(\sigma = \{a_1, b_1, c_1, i_1, j_1\} \). Then the switching graph of \(H \) by \(\sigma \), \(H^\sigma \) will be as in the Figure 2.4. i.e., \(H^\sigma = K_{8+5-6} \cup K_{5-5+6} = K_7 \cup K_6 \).

![Figure 2.3](image1.png)

Figure 2.3. \(H = K_8 \cup K_5 \)

![Figure 2.4](image2.png)

Figure 2.4. \(H^\sigma = K_7 \cup K_6 \)

Theorem 2.10. Let \(H = K_r \cup K_s \) and the vertices of \(\sigma = \{u_1, u_2, u_3, \ldots, u_k\} \subseteq V(H) \) lie in both the components of \(H \). Then \(\sigma \) is a \(k \)-vertex self-switching of \(H \) if and only if one of the following conditions holds:

(i) \(\frac{k+t}{2} \) vertices of \(\sigma \) lie in \(K_r \) and \(\frac{k-t}{2} \) vertices of \(\sigma \) lie in \(K_s \) where \(s = r - t \) and either both \(k \) and \(t \) are even or both \(k \) and \(t \) are odd.

(ii)\(\)Number of vertices of \(\sigma \) in \(K_r \) is equal to the number of vertices of \(\sigma \) in \(K_s \) only if \(k \) is even.
Proof. Let $H = K_r \cup K_s$ with $V(H) = V_1 \cup V_2$ where $V_1 = V(K_r)$ and $V_2 = V(K_s)$. Given $\sigma = \{u_1, u_2, u_3, \ldots, u_k\} \subseteq V(H)$ such that $V_1 \cap \sigma \neq \emptyset$ and $V_2 \cap \sigma \neq \emptyset$.

Let $\sigma = \{u_1, u_2, u_3, \ldots, u_k\} \subseteq V(H)$ be a k-vertex self-switching of H and $|V_1 \cap \sigma| = r$ and $|V_2 \cap \sigma| = k - r$. Then by Result 2.8, we have $H^\sigma = K_{r+k-2r_1} \cup K_{s-k+2r_1}$. Since σ is a k-vertex self-switching of H, $H \cong H^\sigma$ and hence $K_r \cup K_s \cong K_{r+k-2r_1} \cup K_{s-k+2r_1}$. Thus, either $r = s - k + 2r_1$ and $s = r + k - 2r_1$ or $r = r + k - 2r_1$ and $s = s - k + 2r_1$. That is, the chances are either $k = s - r + 2r_1$ or $k = 2r_1$.

Case 1. $k = s - r + 2r_1$

Without loss of generality, let $r \geq s$ which means $s = r - t$ where $t \geq 0$. If $r > s$, then $s = r - t$ and $t > 0$. Hence, $k = 2r_1 - t$ that implies $r_1 = \frac{k + t}{2}$, $k - r_1 = \frac{k - t}{2}$ and since r_1 and $k - r_1$ indicates the number of vertices, either both k and t are even or both k and t are odd. Moreover, if $r = s$ then $t = 0$, thus $k = 2r_1$ which implies $r_1 = \frac{k}{2}$, $k - r_1 = \frac{k}{2}$.

Case 2. $k = 2r_1$

It follows that $r_1 = k - r_1$ and k is even. Moreover $k = 2r_1$ implies $r_1 = \frac{k}{2}$, $k - r_1 = \frac{k}{2}$ for all r, s.

Therefore, if σ is a k-vertex self-switching of H, then the result follows from the above two cases. That is, if σ is a k-vertex self-switching of H, then either $|V_1 \cap \sigma| = \frac{k + t}{2}$ and $|V_2 \cap \sigma| = \frac{k - t}{2}$ where $s = r - t$ or $|V_1 \cap \sigma| = |V_2 \cap \sigma| = \frac{k}{2}$ only if k is even.

Conversely, let $\frac{k + t}{2}$ vertices of σ lie in K_r and $\frac{k - t}{2}$ vertices of σ lie in K_s when $s = r - t$. That is, $|V_1 \cap \sigma| = \frac{k + t}{2}$ and $|V_2 \cap \sigma| = \frac{k - t}{2}$. Then by Result 2.8, we get, $H^\sigma = K_{r-t} \cup K_r \cong H = K_{r-t} \cup K_r$. Hence, σ is a k-vertex self-switching of H.

Also, let $|V_1 \cap \sigma| = |V_2 \cap \sigma|$. Then $r_1 = k - r_1$ follows $k = 2r_1$ which is even. Without loss of generality, let $\sigma = \{d_b^1, d_b^2 : 1 \leq b \leq \frac{k}{2}\}$ where $d_b^1 \in V_1$ and $d_b^2 \in V_2$. Then in H^σ, the $\frac{k}{2}$ vertices d_b^1's are neighbors of the vertices of $V_2 - \sigma$ and the $\frac{k}{2}$ vertices d_b^2's are neighbors of the vertices of $V_1 - \sigma$. Define $g : V(H) \rightarrow V(H^\sigma)$ by $g(d_b^1) = d_b^2$; $g(d_b^2) = d_b^1$, $g(w) = w \forall w \neq d_b^1, d_b^2$, $1 \leq b \leq \frac{k}{2}$. Clearly, g creates an isomorphism between H and H^σ and so σ is a k-vertex self-switching of H.

Hence, we obtain the desired result.

\[\square\]

Conclusion. In this paper, we gave necessary and sufficient conditions for a subset σ of $V(H)$ to be a self-switching for the union of two complete graphs and we used this to determine the cardinality of the set of all self-switchings of H. That is, $ss_k(H)$.

References

1 Department of Mathematics, Pioneer Kumaraswamy College, Nagercoil - 629003, Tamil Nadu, India
Email address: jayacpkc@gmail.com

2 Research Scholar, Reg. No: 23113132092001, Department of Mathematics, Pioneer Kumaraswamy College, Nagercoil - 629003, Tamil Nadu, India. Affiliated to Manonmaniam Sundaranar University, Abishekappati, Tirunelveli - 627012, Tamil Nadu, India
Email address: ssathithiya@gmail.com